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Abstract
We propose a simple statistical mechanics model for the study of the dynamics
of gelling systems. It is based on percolation and bond-fluctuation dynamics for
the bond vectors: we study the critical viscoelastic properties and the relaxation
patterns in the case of irreversible gelation and the results obtained are discussed
by means of scaling arguments. By introducing the idea of a finite lifetime
for the bonds and by simply tuning this timescale, the model can be made
to present very different dynamics and relaxation patterns corresponding to
different gelling phenomenology.

1. Introduction

There is a growing interest in studying gelling systems such as polymers, colloids, and
biological systems. These are systems undergoing a dynamical transition which transforms
the material from a viscous liquid to an elastic solid [1–3]. It is a transition between two
different viscoelastic regimes and it is essentially characterized by the critical behaviour of
the viscosity coefficient and the elastic modulus, and by a complex non-exponential relaxation
behaviour. This dynamical transition corresponds to the constitution of a macromolecular
structure, the gel phase, and some aspects of the transition have been investigated in depth by
means of percolation models. There are also some interesting analogies with the dynamics at
the glass transition, but here the relaxation process and the dramatic change in the viscoelastic
properties are actually controlled by the growth of the connectivity. These features are actually
common to all gelling systems and to some extent unify their phenomenology. Moreover, it has
been recently suggested [4] that the different and puzzling phenomena of the glass transition,
gelation, and aggregation in colloids may be unified in a common jamming phase diagram,
i.e. they can be interpreted as different aspects of a unique jamming transition as long as
an interconnected stress-bearing network is present in the system. This idea is supported in
colloids by the observation of the same characteristic critical behaviour of the viscoelastic
properties. In spite of this, the relaxation properties show a variety of complex behaviours
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depending on the type of the material [5]. Moreover, for the critical behaviour of the viscosity
and elasticity, the experimental data are rather scattered and different theoretical models give
different predictions.

Thus, the problem is to understand how the essential features of the gelation transition
and of the typical gelling system may produce this variety of phenomenological behaviours.
Our approach is to build up a simple statistical mechanics model to enable us to directly link
the dynamical behaviours to the fundamental elements of the model.

We study the dynamics at the gelation transition with a model based on percolation and
a suited dynamics for percolation clusters. In the case of permanent bonds, a permanent
interconnected network, i.e. a static percolating cluster, is present in the gel phase. Within a
viscoelasticity approach, the dynamics of the system can be described in terms of characteristic
relaxation times; for example, in the sol phase the viscosity coefficient diverging as the
percolation threshold is approached corresponds to a diverging average relaxation time.
Permanent bonds correspond then to interactions between monomers that do not change within
the observation timescale. In this sense the interconnected stress-bearing network formed at
the percolation threshold is permanent, as it is not locally changed on any timescale considered.
If bonds change on timescales comparable to or smaller than the observation timescale and
the average relaxation time linked to the diffusion of the clusters, one has a gel phase which
is characterized by a dynamically evolving percolating structure. This possibility can be
simply reproduced in our model by opportunely changing the fundamental parameters, and in
preliminary studies we observe a striking change in the dynamics and the relaxation patterns.
On the whole, the results suggest that this could be a unifying model for the study of the
phenomenology of gelling systems. In section 2 the model is presented. In section 3 the results
obtained via numerical simulations are given and discussed. Section 4 contains concluding
remarks and perspectives.

2. Model and numerical simulations

Our model introduces, within the random-percolation model, bond-fluctuation (BF) dynamics,
which is able to take into account the polymer conformational changes [6]. We study a solution
of tetrafunctional monomers at concentration p and with a probability pb of bond formation.
In terms of these two parameters, one has different cluster size distributions and eventually
a percolation transition. The monomer diffusion process produces a variation of the bond
vectors and is constrained by the excluded-volume interaction and the SAW condition for
polymer clusters: these two requirements can be satisfied if the bond lengths vary within the
allowed range. The gel phase and the corresponding dynamic transition correspond to the
construction of a percolating network. We can introduce the idea of finite bond lifetime τb:
when it is smaller than the observation timescale and the average relaxation time linked to
the cluster diffusion, one has a gel phase which is characterized by a dynamically evolving
percolating structure. We have performed numerical simulations of this model on hypercubic
lattices [7–9]. The BF dynamics can be easily expressed in a lattice algorithm: a monomer
occupies a lattice elementary cell, two occupied cells cannot have common sites, and the
dynamics constraints produce a finite set of allowed bond lengths corresponding to a large
number of different bond vectors.

We have considered lattices of size L ranging between 16 and 40 in 3D with periodic
boundary conditions: the eight sites which are the vertices of a lattice elementary cell are
simultaneously occupied by a monomer, with the constraint that two nearest-neighbour (nn)
monomers are always separated by an empty elementary cell, i.e. two occupied cells cannot
have common sites. The lattice of cells, with double lattice spacing, has been occupied
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Figure 1. An example of time evolution of a cluster formed by four monomers according to the
BF dynamics: in (a), starting from the upper central bond and clockwise, the bond lengths are l =√

5, 3, 3, 2; in (b) the upper left monomer has moved forward and l = 2, 3, 3,
√

5; having moved
the other remaining monomer in (b) to the right, one obtains (c) with l = 2, 3,

√
6,

√
6; moving

the front monomer in (c) to the right, the (d) configuration is obtained with l = 2,
√

10,
√

6,
√

6.

with probability p, which coincides with the monomer concentration on the main lattice
in the thermodynamic limit. Monomers are randomly distributed on the main lattice via a
diffusion process; then between two nn or next-nearest-neighbour (nnn) monomers, bonds
are instantaneously created with probability pb along lattice directions. Since most of the
experimental data on the gelation transition refer to polymers with monomer functionality
f = 4, we have considered this case allowing the formation of at most four bonds per monomer.
We let the system evolve according to the BF dynamics via the monomer movements (figure 1),
and in the case of finite bond lifetime depending on the τb, the bonds are broken and formed.

All the data have been averaged over a sample of ∼30 systems with different initial site
and bond configurations. The numerical simulations have been performed on the CRAY-T3E
system of CINECA.

3. Viscoelastic properties and relaxation behaviour

In the case of permanent bonds the model reproduces well the phenomenology of irreversible
gelling systems. The diffusion behaviour of clusters in the sol at the percolation threshold
shows a scaling behaviour for the diffusion coefficient D as a function of the cluster radius
R (figure 2). This result can be interpreted by means of the following scaling argument: the
generic probe of size R diffuses in a medium with a viscosity coefficient depending on R,
η(R), and a Stokes–Einstein generalized relation D(R) � 1/Rd−2η(R) should be expected to
hold as long as the cluster radius is much greater than the value of the percolation correlation
length. At the percolation threshold, the viscosity coefficient of the sol (the bulk viscosity
coefficient) diverges as η ∼ (pc − p)−k , and because of the self-similarity features of the
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Figure 2. The diffusion coefficient at pc averaged over 32 different configurations for different
cluster sizes as a function of the cluster radius of gyration R.

percolating cluster the scaling behaviour is obtained:

D(R) ∼ 1

Rd−2+k/ν
(1)

at p = pc [7].
Following this argument, we obtain for the viscosity coefficient a critical exponent

k ∼ 1.3 ± 0.1. In order to study the relaxation times in the system independently, we have
calculated the time-autocorrelation function g(t) of the number of pairs of nn monomers ε(t),
defined as

g(t) = 〈ε(t ′)ε(t ′ + t)〉 − 〈ε(t ′)〉2

〈ε(t ′)2〉 − 〈ε(t ′)2〉 (2)

where 〈· · ·〉 indicates the average over t ′ (of the order of 103 time intervals). At different
p-values in the critical region after a fast transient, g(t) decays to zero but cannot be fitted by
a simple time exponential behaviour (figure 3). This is a sign of the existence of a distribution
of relaxation times which cannot be related to a single time. It is a typical feature of polymeric
systems where the relaxation process always involves the rearrangement of the system over
many different length scales [3, 11]. This idea of a complex relaxation behaviour is further
confirmed by the good fit of the long-time decay of g(t) with a stretched-exponential law [7].
This behaviour of the relaxation functions is considered typical of complex materials and
usually interpreted in terms of a very broad distribution of relaxation times or eventually an
infinite number of them, and it is in fact experimentally observed in a sol in the gelation
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Figure 3. The characteristic integral time τ calculated according to equation (3) as a function of
(pc − p). The data are fitted well by a power law with a critical exponent k ∼ 1.31 ± 0.05.

critical regime [5]. We then studied the average characteristic time defined as

τ(p) =
∫ t

0 t ′g(t ′) dt ′
∫ t

0 g(t ′) dt ′
(3)

which is a typical macroscopic relaxation time and can be directly linked to the viscosity
coefficient. Numerically, in equation (3), t has been chosen by the condition g(t ′) � 0.001
for t ′ � t .

For the irreversible gelling system, i.e. in the system with permanent bonds, this
characteristic time grows with p and diverges at the percolation threshold according to the
critical behaviour

τ ∝ (pc − p)−k (4)

with an exponent k � 1.3±0.03, which gives a critical exponent for the viscosity at the sol–gel
transition in agreement with the result obtained from the diffusion properties of clusters [7].
This value of the critical exponent also agrees with the prediction based on the Rouse model
and with some experimental data [10].

The elastic response in the gel phase is studied in terms of the macroscopic elastic constant
of the system K , which is experimentally defined as the ratio between an applied external force
and the deformation. In a simple elongation experiment, if l0 is the undeformed length and
δ = (l − l0) is the deformation in the system, within the linear response approximation the
elastic free energy F ∼ Kδ2. In terms of the Young elastic modulus E, the free energy per
unit volume is F/V ∼ Eδ2/l2

0 . Then K ∼ EV/l2
0 and, for a cube of size L, K ∼ ELd−2,
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Figure 4. A log–log plot of the fluctuation of the percolating cluster gyration radius 〈�R2
g〉 as a

function of the lattice size L at pc: from the fit of the data, the critical exponent z̃ ∼ 1.9 ± 0.1 is
obtained. The lengths are expressed in units of the lattice spacing.

expressing the fact that the elastic modulus has the dimensions of an energy per unit volume
and is an intensive quantity, whereas K depends on the system size L.

In the gel, since E vanishes at pc as ∼ξ−f̃ (where f̃ = f/ν) one has K ∼ Ld−2ξ−f̃ . As
a consequence, for p > pc the macroscopic elastic constant K ∼ Ld−2, whereas for p = pc

the critical behaviour K ∼ L−z̃ is obtained, with z̃ = f̃ − (d − 2).
On the other hand, for a fixed L and close to the percolation threshold, K ∼ (p − pc)

f .
The fluctuation-dissipation theorem relates the deformation in the linear size of the gel

macromolecule δR—and so also the elastic response by means of the Hooke elastic constant
K—to the time-autocorrelation function 〈δR2〉 in the unperturbed system. In fact, in the
undeformed equilibrium system in the thermal bath at temperature T , the average fluctuation
of the free energy is

〈�F 〉 = 1
2K〈�R2

g〉 (5)

and is of the order of kBT , so K ∼ 1〈�R2
g〉/. The radius of gyration Rg is the average linear

size of the gel macromolecule and 〈�R2
g〉 = 〈(Rg − 〈Rg〉)2.

We then calculated the average fluctuation in the gyration radius 〈�R2
g〉 of the percolating

cluster at the percolation threshold in systems of different sizes L. In figure 2 〈�R2
g〉 is shown

in a log–log plot as a function of the lattice size L at pc. In the range considered, the data are
fitted well by a power-law behaviour, giving a critical exponent z̃ ∼ 1.9±0.1, i.e. z ∼ 1.7±0.1.
As z̃ = f̃ − (d − 2), we have f = z + (d − 2)ν, and this result gives f ∼ 2.6 ± 0.1.
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This value is in good agreement with the prediction f = dν of [12] and with the value
observed experimentally in [13].

The study of the dynamic structure factor in the system shows the typical non-exponential
relaxation patterns of irreversible gelling systems: a long-time stretched-exponential decay in
the sol as the gel point is approached, where the occurrence of a power law is observed which
also persists in the gel phase [9]—as is actually observed in experiments [5]. For the system
with finite bond lifetime τb = ∞, preliminary results show that the characteristic time τ grows
with p approaching the corresponding value of the percolation threshold, but then τ has a
finite jump and seems to go to a constant value. This finite jump in the viscosity coefficient is
typically observed in aggregation phenomena in colloids [14]. Moreover, different relaxation
patterns are observed in study of the dynamic structure factor [9].

4. Conclusions

Our model for the study of the dynamics of gelling systems is based on percolation and the
BF dynamics. In the case of permanent bonds we have obtained the critical behaviour of the
viscoelastic properties, in agreement with some experimental findings and some theoretical
predictions, and the typical stretched-exponential and power-law relaxation patterns of
irreversibly gelling systems. By introducing a finite lifetime for bonds, we preliminarly observe
different dynamics and relaxation patterns, characterized by a finite jump in the viscosity
coefficient, which is typically observed in aggregation phenomena. These results suggest that
this could be a unifying model in the study of the phenomenology of gelling systems.
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